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Dielectric Function and Electron Transport
in Collisional Plasma

A. V. Brantov, V. Yu. Bychenkov, W. Rozmus, and Clarence E. Capjack

Abstract—A procedure is proposed for finding a solution to the
linearized kinetic equation with the Landau collision integral in-
cluded for charged particles in a plasma with a high degree of
ionization. This procedure is used to obtain an expression for di-
electric permittivity tensor for a collisional plasma over the entire
range of frequencies and wave numbers as well as the collision-
ality parameter. This is transformed to the known expressions in
the corresponding asymptotic strongly collisional and collisionless
limits. Nonlocal linear transport equations for small perturbations
are also formulated for arbitrary relations between the character-
istic space, time and collision scales of the plasma.

Index Terms—Kinetic theory, nonlocal transport, plasma
physics.

I. INTRODUCTION

THE dielectric response function of a plasma is the fun-
damental quantity considered in all textbooks on plasma

physics. Still, an universal expression or an effective algorithm
for its derivation in collisional plasmas has not been obtained
over the entire range of wave numbers and frequencies .
This is due to the fact that even determining the linear plasma
response involves the solution of an integro-differential kinetic
equation for particles experiencing Coulomb collisions. The
derivation of the plasma susceptibility function in a form
that would permit its effective use in various applications has
been formulated when the exact Landau collision integrals are
replaced by model expressions. However, such simplifying
assumptions may lead to a significant loss in the numerical
accuracy.

One of the most widely used expression for the longitudinal
permittivity of a collisional plasma has been derived by using
the Bhatnagar–Gross–Krook (BGK) collision integral [1]. This
simple approximation enables an effective description of disper-
sion properties of the plasma in the presence of collisions. How-
ever, the use of the BGK model can lead to a significant error
in certain regions of . Attempts to improve such a model
description by introducing the velocity dependent effective col-
lision frequency have not substantially improved the accuracy
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of the dielectric susceptibility [2], [3]. A noticeable improve-
ment of the theory was obtained when the electrostatic plasma
response was determined by using the Lorentz model with an
exact Landau electron–ion collision integral [4]–[6]. However,
it has been shown that neglecting the electron–electron colli-
sion integral still does not allow an accurate description to be
obtained for the dielectric properties of plasmas over the entire
range of frequencies and wavelengths [7], [8].

The same problem arises in the calculation of the transverse
permittivity. Many applications simply rely on various approx-
imations to the electron permittivity based on the Drude model
or its modifications [2]. However, the actual limits of the va-
lidity of these approximations are often unknown. For example,
one must account for significant variations of the electron–ion
collision frequency , which changes by factors of few as one
moves from the alternating current regime, , to the di-
rect current regime, . Also, the nonlocality of the elec-
tron conductivity which depends on the collisionality parameter

should be taken into account ( is the electron–ion colli-
sion mean free path). A theory of the plasma response to electro-
magnetic perturbations has been developed in [9] based on the
full solution to the Fokker–Planck equation in high plasmas
without electron–electron collisions. Those results have been
compared to approximate expressions for the electron conduc-
tivity based on the Drude model and indicate a discrepancy by
a factor of few in regions where the spatial dispersion is impor-
tant.

In addition to theoretical models providing an accurate de-
scription of the dielectric susceptibility over the entire range of

, standard perturbation theory gives the correct asymptotic
behavior of the dielectric function. Such approximations include
the kinetic theory of weakly collisional plasmas [10] and the
hydrodynamic-type theory for collisional plasmas [11]. These
theories are appropriate within restricted regions of the param-
eters and . The most direct method for calculating
the dielectric susceptibility for arbitrarily values of in-
volves a numerical solution of the Fokker–Planck kinetic equa-
tion in Fourier space. However, a numerical solution to the ki-
netic equation is still a difficult task and the results are restricted
to a particular set of parameters. Consequently, the construction
of a theory which provides a universal method for obtaining the
dielectric susceptibility tensor over the entire range of frequen-
cies, wave numbers, and arbitrary plasma parameters
is important for many practical applications. Here, we review
our study which is devoted to the solution to this problem.

The problem of determining the dielectric susceptibility of a
collisional plasma is closely related to the problem of nonlocal
transport. Theoretical models of nonlocal transport in hot fully
ionized plasmas have been developed for more than 20 years
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beginning with publications [12]–[15]. However, a further
improvement of these models is required for the case where

. Classical strongly collisional transport theory
does not apply [16], [17] in this limit. Such conditions are often
encountered in inertial confinement fusion (ICF) experiments
where the characteristic length of plasma inhomogeneity
in the region of laser energy absorption does not exceed one
hundred electron mean free paths. Strong inverse dependence
of a Coulomb collision frequency on the particle kinetic energy
makes the nonlocality of the particle transport an essential
feature of hydrodynamical models of fully ionized plasmas.
For this reason, the interpretation of almost all laser produced
plasma experiments requires the use of nonlocal transport
theory.

Significant advances were made in the development of non-
local transport theories by using the small perturbation model
[12], [18]–[21]. Analytic solutions to linearized kinetic equa-
tions can be obtained relatively simply for high Z plasmas and
these are used to calculate electron fluxes. Most of these the-
ories assume that the transport processes are sufficiently slow
(quasi-stationary) so that the transport coefficients can be con-
sidered to be independent of time. In such a quasi-static approxi-
mation, the nonlocal hydrodynamic equations as derived in [19]
and [20] are completely equivalent to the linearized kinetic de-
scription of a plasma. However, the validity of the quasi-static
nonlocal theory is restricted by the nonstationary nature of trans-
port processes [7], [8], [22]. Even for small amplitude perturba-
tions, effects of nonstationary transport are reflected in terms
appearing in the transport coefficients, which leads to a compli-
cated frequency dependence of the dielectric function. In [4] and
[23], these effects were taken into account for weakly collisional
and collisionless plasmas. The approach recently developed by
the authors [7], [8] makes it possible to analyze transport prop-
erties of plasmas for arbitrary relations between the temporal,
spatial, and collisional scale lengths.

Nonlocal hydrodynamics provides a reduced description
of a plasma in terms of few hydrodynamical variables. Such
equations are easier to solve than the equivalent kinetic model.
Starting with the early 1990s, nonlocal models have been
developed [24]–[27] with the objective of incorporating kinetic
effects (such as Landau damping) into hydrodynamic equa-
tions. These theories dealt with collisionless and magnetized
plasmas. A systematic procedure of deriving nonlocal closure
relations for fluid equations is a necessary step in deriving a
reduced plasma description.

In this paper, the derivation of transport equations for plasma
perturbations and expressions for the dielectric susceptibility
tensor are based on the solution to the initial value problem
for the linearized kinetic equation for plasma particles [7], [8],
[19], [20]. Independently, [28] has presented similar nonlocal
closure for the transport equation describing plasma evolution
in response to initial perturbations. However, this work [28] has
used a simplified kinetic equation and applies only to limited
range of plasma collisionality parameter. The method used in
our paper for solving the kinetic equation is valid for a plasma
with a large ionic charge . It is applicable for arbitrary
relations between the perturbation inhomogeneity spatial scale
length and the electron mean free path, as well as the

typical temporal perturbation time scale, , the electron
collision time, and the free transit time (the time during which
an electron with mean thermal velocity passes the distance
equal to the characteristic scale length of plasma inhomogeneity,

). In this approach, a spherical harmonic expansion of
the distribution function is used. All angular harmonics of the
electron distribution function are summed, thus allowing a de-
scription of the continuous transition from the strongly colli-
sional hydrodynamic limit to the collisionless case in the trans-
port equations and in the expression for dielectric susceptibility.
The solution to the initial value problem for perturbations of
the distribution function [19], [20] is generalized to the non-
stationary case [7], [8]. The transport equations are formulated
in the form of relations between Fourier components of the
electron fluxes and the generalized hydrodynamic forces (i.e.,
the density and temperature gradients, plasma velocity, and the
electric field). Due to nonstationary response, all electron trans-
port coefficients in the -space contain imaginary compo-
nents, which are missing in the quasi-stationary theory [12],
[18]–[20]. The resulting complex longitudinal and transversal
dielectric susceptibilities are analyzed over the entire re-
gion as functions of the plasma collisionality parameters, ,

. Relations between the dielectric susceptibility of a
plasma and the nonstationary nonlocal transport coefficients are
found.

II. KINETIC EQUATION

Consider a small perturbation of the homogeneous equi-
librium plasma with electrons and ions described by the
Maxwellian distribution functions which are
characterized by particle densities and temperatures .
The linearized equation for the spatial Fourier components

of the perturbation reads as follows:

(1)

where and are the Landau collision operators for par-
ticles of the same and different species, respectively and with a
charge and a mass .

After taking the one-sided Fourier transformation in time, we
expand the function in spherical harmonics

(2)

where and are the polar and azimuthal angles characterizing
the direction of the particle velocity relative to the vector .
These operations reduce the kinetic equations (1) to an infinite
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system of equations for the angular harmonics of the distribution
functions,

(3)

Here, the collision operators, (both for and for
), have the form of Rosenbluth potentials

(4)

where is the velocity depen-
dent collision frequency between particles of the kind with
particles of the kind , is the Coulomb logarithm, and

(5)

are Rosenbluth potentials and their perturbations ,
defined in the standard way [11].

By assuming that initial perturbations of distribution func-
tions have a Maxwellian form (i.e., they are charac-
terized by initial perturbations of densities and temper-
atures )

(6)

the source functions are specified by initial perturbations
of the distribution functions and by the Fourier compo-
nents of the electric fields : ,

and
, where the vector is assumed to be directed

along the axis.
Since we are only interested in electron kinetic effects, we

seek a solution to (3) for the electron distribution function
(EDF). By assuming that ions have a large charge , elec-
tron–electron (e–e) collisions can be neglected in the equations
for higher harmonics of the electron distribution function, and
are retained only in the equation for the symmetric part of the
EDF. Further simplifications result from the expansion of the
electron–ion collision integrals with terms involving the ratio
of the characteristic ion velocity to the electron velocity being
neglected. Contributions on the order of in ,
which are responsible for the slow energy transfer from the
electrons to the ions are also neglected. This is well justified,
for example, in the case of a laser produced plasmas. Thus, for
the electron–ion collision integral, we will use the expression

(7)

where the terms proportional to the mean ion velocity
(plasma velocity) give additional source terms.

The standard approach that is used to solve the infinite system
of (3) is to assume that the higher angular harmonics are small
and that reasonable accuracy can be obtained by retaining just
two of them, and . This procedure is fully justified in the
strongly collisional limit. However, in order to describe tran-
sitions to the collisionless domain, a large number of angular
harmonics of the distribution function must be taken into
account. In fact, the correct description of Landau damping re-
quires the summation of the entire infinite series of angular har-
monics. Such a summation procedure has been introduced be-
fore [14], [18], [20] in terms of the modified collision frequency

(8)

which satisfies the following recurrence relation

(9)

Equation (9) can be also represented in terms of continuous
fractions. Accurate calculations of the functions and
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for any practically interesting conditions usually involves 20–30
terms.

This summation procedure can be used to find an expression
for the first angular harmonic of the EDF,

(10)

where the following notation has been introduced for the longi-
tudinal and transverse components of a vector :

(11)

The symmetric part of the perturbed EDF
satisfies the kinetic equation

(12)

with the initial perturbation defined by the relation
(6). Equation (12) is a linear inhomogeneous equation, whose
general solution can be written as a linear combination of three
basis functions [8], [20]

(13)

where the basis functions satisfy three ki-
netic equations with various source terms

(14)

The three velocity functions: ,
are sources corresponding to the perturbations

of the electron density , the electron temperature , and
the ion velocity . Equation (14) has been analyzed in detail
in [20]. It was solved numerically by expanding the solution in
Sonine–Laguerre polynomials and analytically
in the strongly and weakly collisional limits.

The equation for the first azimuthal harmonic ( ,
) of the EDF (10) can be used directly to calculate

transverse electron fluxes and transport coefficients. Calcula-
tion of the longitudinal electron fluxes requires elimination
of the initial density and temperature perturbations from the
expression for the symmetrical harmonics of the
EDF (13). From the two first velocity moments of (13) for the

perturbations of density and temperature
at time we obtain

the following system of equations:

(15)

where we have introduced velocity moments of the basis func-
tions

(16)

where . The matrix is symmetric [20].
If the initial density and temperature perturbations are ex-

pressed in terms of their instantaneous values, (15) can be used
to derive the following expression for the isotropic part of the
EDF :

(17)

where . Equation (17) is written in
terms of hydrodynamical moments and basis functions (14).
The symmetric part of the EDF can be used to calculate the
anisotropic perturbation to the distribution function and to
derive closure relations for the system of hydrodynamic equa-
tions.

III. NONLOCAL HYDRODYNAMICS FOR

ELECTRON PERTURBATIONS

We have proposed a new systematic closure procedure that
expresses EDF in terms of its lower velocity moments (17). The
well-known closure strategy in the strongly collisional limit is
the Chapman–Enskog procedure. However, this method only
applies when the electron mean free path and the character-
istic perturbation scale length satisfy the following inequality

[29]. Consequently, classical theory cannot
be used for describing experiments such as those involving the
interaction of laser radiation with matter in fusion studies, where
small-scale perturbations are of particular interest. The range
of applicability of the hydrodynamic equations in describing
plasmas has been significantly expanded within the framework
of nonlocal hydrodynamics [20]. At first, this theory was for-
mulated for slow processes in the quasi-static approximation.
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In the previous sections, we have summarized the generalization
of the nonlocal hydrodynamics framework to the case of rapidly
varying processes in a plasma for potential perturbations [8].

A. Nonlocal Transport Equations

The first three moments of the kinetic equation (1) lead to
equations of continuity, momentum, and energy balance for
electrons

(18)

where is the mean electron velocity and

(19)
are the electric current and the electron heat flux. We have also
introduced an effective electric field as follows:

(20)

As in the previous studies [8], [9], [20], we introduce an effec-
tive friction force and the stress tensor

(21)

where is the unit tensor and is the
averaged electron–ion collision frequency. Note that the elec-
tron momentum equation [the second in (18)] can be used for
defining the stress tensor .
Two other equations from (18), which involve only longitudinal
electron fluxes are equivalent to the system (15).

Since the EDF contains terms that are proportional to the vec-
tors and , the electron flux will have components that are
transverse and parallel to the vector . The longitudinal compo-
nent, directed along has the following form [8], [19], [20]:

(22)

(23)

where is the electrical conductivity, is the thermoelectric
coefficient, is the temperature conductivity and are the
ion convection transport coefficients

(24)

Transport coefficients (24) depend only on the moments
of the isotropic part of the basis functions . All
additional moments of , which are introduced as a result of
the integration in (10) have been eliminated by using solutions
of (14) and by taking into account the conservation of particle
number and energy in e–e collisions

(25)

The transport relations (22) satisfy Onsager symmetries: the co-
efficient is the same in the expressions for the electric current
and the heat flux. Only one new coefficient appears in the
expression for the friction force. This is in agreement with the
equalities and symmetry relations
are satisfied for arbitrary , .

The transverse electron fluxes are defined as a moment of the
first harmonic and are expressed in terms of the transverse
electric field and transverse mean ion velocity. The final expres-
sions read [20]

(26)

(27)
where we have introduced the transversal transport coefficients
as follows:

(28)
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Fig. 1. Dependence of the longitudinal transport coefficients �, �, �, and � on k� in the static limit (35) for a plasma withZ = 8 (small dots) and Z = 64

(large dots). Solid curves correspond to the proposed approximation. Dots lines correspond to the classical strongly collision asymptotic behavior and the dashed
lines correspond to the collisionless limit.

These coefficients also satisfy relations similar to Onsager sym-
metries (coefficient appears both in the electric current and
in the friction force).

All electron transport coefficients have real and imaginary
parts which when presented in dimensionless form, can be pa-
rametrized by , and similarly to classical expres-
sions. The longitudinal transport coefficients (24) were analyzed
in [8] and all transport coefficient in the static limit were
studied in [20].

B. Potential Components of the Electron Fluxes

Consider first the limit of slow processes, such that
, , and the frequency can be neglected in the ki-

netic equations. In this approximation, we substitute the solution
of (14) into (24) and find the longitudinal transport coefficients
to be purely real [19], [20] and with a dependence only on
and . Results of these calculations are shown in Fig. 1. In the
strongly collisional limit the ion convective

coefficients vanish as while the remaining transport coef-
ficients converge to their classical values

(29)
All of these coefficients have similar long-wavelength asymp-
totic representations

(30)

Note that in this limit, the ion convection coefficients do not
explicitly depend on the ion charge.

In the short-wavelength limit , the coefficients
and approach unity and the coefficient vanishes. All other
transport coefficient are inversely proportional to the wave
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number and exhibit a fractional-power dependence on in the
weakly collisional regime , similarly to results
of [12], [30]

(31)

The function has been found in [30]
from an asymptotic solution of the equation for the basis func-
tion (14) in the range .

We note that the electrical conductivity is almost indepen-
dent of the ion charge and quickly converges to the asymptotic
expression at large values of . The simple expression

(32)

is a good approximation for the electric conductivity over the
entire range of .

The temperature conductivity is the most sensitive function
of the ion charge and the dimensionless inhomogeneity scale
length . Deviation from the classical limit occurs at

. We introduce the following approximation for the
temperature conductivity coefficient:

(33)

which works well over the entire range of the collisionality pa-
rameter.

The most unusual dependence on the wavelength is exhibited
by the thermoelectric coefficient. It changes sign in the interme-
diate range, –10. In the range the coefficient

is almost independent of the ionic charge and can be charac-
terized by the simple expression

(34)

In the range , the thermoelectric coefficient changes
sign at a value of which depends on . For example, passes
through zero at and 5 for and ,
respectively.

The applicability of the static transport coefficients in the
classical strongly collisional limit requires
small values of frequency as compared to the electron–ion
collision frequency, [11]. In this limit, transport coef-
ficients are determined primarily by the electron–ion collision
frequency, . Effects associated with electron–electron col-
lisions represent small corrections of the order [16],
[17]. The limits of validity for the localized form of these clas-

sical coefficients are determined by the electron energy delo-
calization length [14], [15]. For , elec-
tron–electron collisions begin to affect transport coefficients and
to modify the symmetric part of the distribution function, which
in turn determines the anisotropic perturbations of the EDF [see
(10)], as well as the electron fluxes. As increases, the role
of low energy electrons (electrons which are characterized by
the velocity ) becomes dominant in the evolution
of the symmetric part of the EDF. These slowly moving par-
ticles are strongly affected by electron–electron collisions [12].
For example, for , the characteristic electron velocity

becomes noticeably lower than the
thermal velocity [12], [20]. Thus, the region of validity of the
static approximation for the transport coefficients for moderate
gradients is determined by the con-
ditions , [12], [20], where

. For higher gradients where ,
all angular harmonics must be taken into account in order to
obtain a correct description of the particle transport. In this col-
lisionless regime, the validity condition for the static approxi-
mation is defined in the usual way as . In summary,
the static approximation applies under the following conditions
[8]

(35)
The jump in (35) at indicates the transition to
the collisionless regime where all spherical harmonics should
be taken into account.

The validity of the local transport theory can be extended
into high frequency regime by using a simple exact solution
to the kinetic equation [11] for . Our non-
local theory shows that nonlocal effects are insignificant for

, . In this case, (10) for the two first
harmonics of the EDF ( ,1) can be solved by using the first
two Laguerre polynomials in
the expansion of the basis functions. In this approximation, the
effective collision frequency satisfies the following expression:

. As a result, transport coefficients are given by
[11]

(36)
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Fig. 2. Dependence of the real and imaginary parts of transport coefficients �, �, �, and � on !=� in the long-wave limit k� < 0:06=
p
Z , 0:1!=� .

Dashed curves correspond to the static limit (37).

where we have introduced the notation
, .

These expressions for transport coefficients are independent of
the wave number and correspond to the local limit, including
the hydrodynamic (static) limit. Fig. 2 shows transport
coefficients as functions of frequency. In the limit of strong
collisions and low frequency , expressions (36) lead
to classical transport coefficients [16] with small imaginary
corrections

(37)

In the high-frequency limit , coefficients and
have small imaginary components and these coefficients tend to
unity. The coefficient has a small absolute value and has a
real component that is smaller than the imaginary component.
In the same limit, the transport coefficients , and become

purely imaginary and independent of and have small real cor-
rections:

(38)

As the collision parameter is increased, the nature of the
frequency dependence of transport coefficients changes. For ex-
ample, coefficients and show a nonmonotonic frequency de-
pendence, which can be clearly seen in Fig. 3. First, the real part
of the temperature conductivity increases with frequency as
compared to the static case, and then decreases for .
At the same time, the imaginary part of the temperature conduc-
tivity is first negative and decreases to its minimal value; then
begins to increase, changes sign, reaches its maximal value, and
then decreases again. Both the imaginary and real parts of the
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Fig. 3. Dependence of the real and imaginary parts of longitudinal transport coefficients �, �, �, and � on !=� for k� = 1 and for a plasma with Z = 8

(solid lines) and Z = 64 (dots).

temperature conductivity have a maximum for for
(see Fig. 3). An even more complex frequency depen-

dence appears for the thermocurrent coefficient whose imag-
inary and real parts each have three local extreme points. The
real part of reverses its sign upon an increase in .

Relatively simple equations for transport coefficients can be
obtained in the region where e–e collisions are negligible
[6], i.e., for , . In this case, we find
solutions of the system (14) for the basis distribution functions
in the form . We obtain the
following expressions for velocity moments of basis functions:

(39)

where
. All transport coefficients (24) can easily be calculated

in terms of these moments.
In the collisionless kinetic limit , the transport co-

efficients are independent from the ion charge . In this limit,
we have , , , while the remaining coefficients
are functions of parameter and can be obtained by
using , as the effective frequency in (39), where

[cf. (9)]. In this case, we pro-
pose a simple approximate equation

(40)



BRANTOV et al.: DIELECTRIC FUNCTION AND ELECTRON TRANSPORT IN COLLISIONAL PLASMA 747

Fig. 4. Dependence of the real and imaginary parts of longitudinal transport coefficients �, �, � on !=kv , calculated using formula (41) (dots), in comparison
with the exact collisionless theory (42) (solid curve).

for . This has an accuracy which is within 1% of the exact
value. By substituting expressions (39) calculated in this way
into (24), we obtain

(41)

where the following notation is used:
. It should

be noted that expressions for collisionless transport coefficients
were also obtained in [23]. A different definition of the
transport coefficients from those in (41) was used and included
an explicit summation of infinite series. The collisionless
transport coefficients can be calculated by solving the initial
value problem for the Vlasov kinetic equation. This leads to
the following expressions for moments, :

(42)

where is the stan-
dard dispersion function used in the collisionless theory of
plasmas [1]. The behavior of collisionless transport coefficients
as functions of is illustrated in Fig. 4.

The expression for the heat flux is often written in terms of the
temperature gradient and the electric current [17]. Accordingly,
by eliminating the electric field from (22), we obtain

(43)

where the thermal conductivity and the ion convective trans-
port coefficient are introduced. Both coefficients have a sen-
sitive dependence on the ion charge. In the strongly collisional
limit , transforms into the classical heat conduc-
tivity [16], [17]: . Note that in the static
limit (35) for , the approximate formulas

(44)

provide a good description of nonlocal heat transport in a current
free plasma. Fig. 5 illustrates the dependence of these transport
coefficients on in the static limit (35) and on for

.
Formula (43) for (a no-current plasma) are directly

related to the description of transport in an ICF plasma. It was
shown in the hot spot relaxation problem [7], [22] that transient
effects and nonlocal transport are important for .
For such inhomogeneity scale lengths, the stationary approaches
[12], [14], [15], [18]–[20] are not applicable. The equations
of nonlocal hydrodynamics with nonstationary transport coef-
ficients [8] enable description of a plasma for any spatial and
temporal perturbation scales.

C. Nonpotential Components of the Electron Fluxes

In discussing the nonpotential electron flux components, we
recall that the transverse transport coefficients do not depend
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Fig. 5. Dependence of the real and imaginary parts of longitudinal transport coefficients �, � on k� in the static limit (35) (imaginary part = 0) for a plasma
with Z = 8 (small dots) and Z = 64 (large dots) and on !=� for k� = 1 and for a plasma with Z = 8 (solid lines on second panel) and Z = 64 (dots).
Solid curves on first panel correspond to the proposed approximation. Dots lines correspond to the classical strongly collision asymptotic behavior and the dashed
lines correspond to the collisionless limit.

on e–e collisions or on the isotropic correction to the distribu-
tion function. Therefore, (28) give explicit expressions for these
coefficients, which are plotted in Fig. 6 in the static limit. In
this limit, all these transport coefficients are real. The applica-
bility condition for the static approximation for the transverse
transport coefficients reads , . The static trans-
verse transport coefficients have a long-wavelength asymptotic
behavior which is similar to the behavior of the longitudinal
transport coefficients. However, their deviation from classical
values is determined by the small parameter , rather
than , i.e.,

(45)

When the nonlocal behavior of transport is taken into account,
the transversal transport coefficients differ from the longitudinal
ones, i.e., the electron fluxes demonstrate an anisotropy. This
vanishes in the local limit, , , where the trans-
verse transport coefficients have the same form as the longitu-
dinal ones. By using in (28), we obtain expres-
sions (36) for all transverse transport coefficients.

In the weakly collisional limit , the perpendicular
transport coefficients are almost independent of the collision fre-
quency , which gives only small corrections. In this limit, the

coefficients and tend to unity, while the coefficient
vanishes in accordance with

(46)

Note that the transverse short-wavelength limit for the ion con-
vective coefficients do not contain logarithmic terms as in (31)
because e–e collisions do not contribute to the transverse trans-
port coefficient. In the same limit, the transverse coefficients
and are functions of the parameter . These can
be represented in a similar way as the longitudinal ones, e.g.,
by using similarly to the effective frequency in
(28) with . At the same
time, the collisionless transverse transport coefficients can be
calculated exactly by solving the initial value problem for the
collisionless kinetic equation which gives

(47)
In the quasi-static collisionless limit, we recover the result

(48)
that corresponds to the free streaming transport limit. Figs. 7 and
8 show frequency dependence of the above transport coefficients
for several values of .
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Fig. 6. Dependence of the transverse transport coefficients � , � , and � on k� in the static limit (35) (dots). Dots lines correspond to the classical
strongly collision asymptotic behavior and the dashed lines correspond to the collisionless limit.

IV. DIELECTRIC TENSOR OF COLLISIONAL PLASMA

Since our transport equations contain both a potential part and
a transverse one, the total dielectric permittivity of a plasma

(49)

is determined by the longitudinal and transversal com-
ponents. The hydrodynamic equations (18) are equivalent to
a kinetic description and completely determine the linear re-
sponse of a plasma to small perturbations over the entire range
of parameters . These equations can be used for deriving
the permittivity of a plasma. In order to calculate the
longitudinal permittivity

(50)

we eliminate the density and electron temperature perturbations
from the expression for electric current by solving the system
(18)

(51)

For the transversal permittivity , we can
use (26). We first analyze a pure electron plasma in the limit of
stationary (infinitely heavy) ions by assuming .

A. Longitudinal Electron Susceptibility

We will characterize the electron contribution to the lon-
gitudinal permittivity by the function
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Fig. 7. Dependence of the real and imaginary parts of transverse transport coefficients � , � , and � on !=� for k� = 1.

, where is the electron Debye radius. By using
relation (51), we obtain the following expression:

(52)
which enables contributions to from all transport coefficients
to be found. However, the function is determined by only one
specific moment of the basis function.

In the local limit , , an analytic
expression for is obtained by substituting (36) into formula
(52). In the hydrodynamical limit of low frequencies ,
this leads to the expression

(53)

In the limit , the electronic susceptibility is determined
by the classical electrical conductivity . In
the opposite case , the static permittivity describes
Debye screening effect, ; transport coef-
ficients only determine the small imaginary correction

, which includes comparable contributions from coef-
ficients , , and . The dispersion relation in the static
limit for gives the entropy mode
with a classical thermal conductivity [16], [17]. For fast pro-

cesses , the permittivity is determined by the high-
frequency electrical conductivity and is described by the well
known expression [10].

Fig. 9 shows the parametric , plane divided into re-
gions corresponding to different approximations for describing
the permittivity beginning with the classical hydrodynamic limit
(dashed region) to the collisionless kinetic limit (dotted region).
The grey region between the fine solid curves in Fig. 9 corre-
sponds to strongly decaying perturbations, for which

. Under the unmarked bold solid curve, the real part of
the permittivity corresponds to Debye screening,

. The boundary curve denoted by separates the
quasi-stationary regime (35), for which electron–electron colli-
sions are important, from the nonstationary regime. It should be
noted that for in the quasi-static approximation,
two angular harmonics (diffusion approximation) are sufficient
for calculating the electron distribution function and, accord-
ingly, all transport coefficients as well as the permittivity [12].
In this limit and for , the approximate expression
for the permittivity has the form [12]

(54)

which is close to the exact solution. Our analysis shows that the
range of applicability of relation (54) is in fact .



BRANTOV et al.: DIELECTRIC FUNCTION AND ELECTRON TRANSPORT IN COLLISIONAL PLASMA 751

Fig. 8. Dependence of the real and imaginary parts of transverse transport coefficients � , � on !=kv (dots) for k� = 10 in comparison with the exact
collisionless theory (47) (solid curve).

Fig. 9. Parametric (k; !) plane for the longitudinal permittivity of plasmas.
Dotted curves describe the spectra corresponding to the Langmuir (epw) and
ionic–acoustic waves (iaw). References are given in the brackets.

In the frequency range in which the e–e collisions can be ne-
glected, we can reconstruct from relation (39) the permittivity
obtained in [4]–[6], which leads to the well-known expression

(55)

in the collisionless limit. The general expression derived for per-
mittivity is applicable for describing the plasma over the entire
range of and for any number of collisions in the plasma.
The contribution of collisions to the permittivity of the plasma
is often described by using a simplified collision integral in the
BGK form. The theory presented here makes it possible to de-
termine the accuracy of this approximation. The best agreement
is obtained by using the expression proposed in [3]

(56)

However, in spite of the fact that the behavior described by
this expression is correct in general, it differs noticeably from
the exact result for in a wide frequency range [see
Fig. 10(a)]. With increasing , the agreement is improved;
however, it follows from Fig. 10(b), that (56) still differs from

Fig. 10. Dependence of the real and imaginary parts of ��(!;k) (52) (dots)
on !=� for k� = 0:25 (a) and 2.25 (b) in comparison with the theory
disregarding the electron–electron collisions (solid curves) [9] and the BGK
model (56) (dashed curves) [3].

the exact solution by a factor of 2 to 3 in the range of frequen-
cies .

B. Transverse Electron Susceptibility

The electron transverse permittivity is completely defined by
the transverse electrical conductivity (28) [9]

(57)
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Fig. 11. Dependence of the real and imaginary parts of the transversal permit-
tivity (� � 1)! =! (57) (dots) on !=� for k� = 1 in comparison with
Drude model (58). Dashed lines correspond to collisionless theory (59).

In the local regime, , using as an
effective frequency in (57) one obtains an expression for the
transverse electron susceptibility known as the Drude model

(58)

In the collisionless limit , the dielectric permittivity
agrees with the Vlasov theory result [1]

(59)

There are also several limits where expressions for transverse
susceptibility are well known. They follow from asymptotic rep-
resentations for the electron conductivity (29), (37), (38), (48).
The collisional, static limit, , , corresponds to
the electron permittivity in the hydrodynamical approximation

(60)

This is useful, for example, in the description of the normal skin
effect. The collisionless static limit , corre-
sponds to resonant wave interaction with slow particles

(61)

and describes an anomalous skin effect. The high frequency
limit , , is also well known,

(62)

Fig. 11 shows transverse permittivity in comparison with dif-
ferent models. It is clear that for , the Drude model
(58) gives a poor approximation in a wide frequency range.

Fig. 12. Parametric (k; !) plane for the transversal permittivity of plasmas.
References are given in the brackets.

The transverse susceptibility plotted in the parametric
plane in the Fig. 12 is simpler as compared to Fig. 9 for the longi-
tudinal susceptibility. The region in which (grey
region) is roughly defined by the inequality , . The
Drude model (58), which corresponds to classical local descrip-
tion, is applicable for , (dashed region
in Fig. 12). The dotted region corresponds to the collisionless
kinetic model (59), which is valid for .

C. Ion Contribution to Permittivity. Damping of
Ion-Acoustic Wave

In accordance with definition (50), elimination of the ion ve-
locity from expression (51) allows ion contributions to plasma
permittivity to be calculated. This will be accomplished in this
section by solving hydrodynamical equations and finding rela-
tion between and the electric field. Strictly speaking, a com-
plete kinetic description of ions is required in this case. How-
ever, according to the results obtained in [30], for fast pertur-
bations , where is the ion thermal velocity, we
can use hydrodynamic equations for ions, in which the ion vis-
cosity and heat conductivity are taken into account by using the
21-moment approximation of the Grad method. This leads to the
hydrodynamical equations for ions in the following form:

(63)

The longitudinal component of the stress tensor is represented
in terms of the ion viscosity , [30]

(64)

and the energy exchange during e-i collisions in the energy
conservation equation is neglected. An expression for the ionic
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Fig. 13. Dependence of the ion-acoustic damping factor � on k� for a plasma with Z = 8 and Z = 64 in comparison with a numerical solution (dots) of the
Fokker-Plank equation [18].

thermal flux is determined by the thermal conduc-
tivity [30]

(65)

Here, the ion–ion collision frequency is introduced in the stan-
dard form, .

By using relations (63)–(65), we can exclude the ion velocity
from expressions for the electric current (26), (51) to describe
the total permittivity of the plasma in the following form:

(66)

where

(67)

Thus, expression (66) defines the total permittivity of a plasma
with negligibly small ion Landau damping, .

From the dispersion relation in the quasi-neutral limit
, we obtain a weakly damped solution

, which describes an ion–acoustic wave with a damping rate
specified by the formula [20]

(68)

where is the ion–acoustic velocity. We note that all nonlocal
transport coefficients contribute to the damping factor . This
result corresponds exactly to the numerical solution of the
Fokker–Plank equation [18]. The dependence of on is

shown in Fig. 13. The decay rate agrees with the hydrodynamic
expression in the long
wavelength limit and with collision-
less Landau damping rate of in the
short-wavelength range .

V. CONCLUSION

We have derived equations of nonlocal transport for small
perturbations in the general case of arbitrary relations between
the characteristic space, time, and collision time scales. Our hy-
drodynamic equations are equivalent to a kinetic description of a
plasma in terms of the linearized Fokker–Planck equation. The
nonstationary and nonlocal transport coefficients in a Fourier
representation are calculated in the entire region. The
theory that is developed generalizes earlier transport models to
the case of arbitrary and describes all limiting transitions
to known results.

We propose a practical algorithm for calculating the dielectric
tensor of a Maxwellian plasma for arbitrary values of frequency
and wave number. The expression for permittivity derived here
describes a smooth transition from the hydrodynamic region of
strong collisions to the collisionless kinetic region and from the
static to the high-frequency limit. On the basis of our theory,
it becomes possible to analyze the linear plasma response and
dispersion relations for unmagnetized plasma modes over the
entire region of wave numbers and frequencies.

The development of nonlocal hydrodynamics is especially
important for describing heat transport which is fundamental
process for the laser plasma interactions in ICF experiments.
It is well known that traditional hydrodynamic codes with a
thermal flux that is described by using classical theory or its
simple heuristic modifications, fail to explain experimental data
correctly. A model with nonlocal transport give a much better
agreement with experimental results [32].

The direct application of nonlocal nonstationary linear
transport coefficients may involve the theory of laser plasma
instabilities. The importance of nonlocal effects on transport
in the quasi-static limit of filamentation instability and stimu-
lated Brillouin scattering was demonstrated in [33], [34]. Our
approach can be used to investigate instability in a strongly
nonstationary laser plasma. Another important application
of the permittivity is associated with the calculation of the
Thomson scattering cross section, which is widely used for
diagnostics of plasmas [31], [32].
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